Solve: $-\dfrac{1}{4} \lt \dfrac{3}{4}(3x - 2) \lt \dfrac{1}{2}$
$
A.\:\: \dfrac{5}{9} \lt x \lt \dfrac{8}{9} \\[5ex]
B.\:\: -\dfrac{8}{9} \lt x \lt \dfrac{7}{9} \\[5ex]
C.\:\: -\dfrac{8}{9} \lt x \lt \dfrac{5}{9} \\[5ex]
D.\:\: -\dfrac{7}{9} \lt x \lt \dfrac{8}{9} \\[5ex]
$
$-\dfrac{1}{4} \lt \dfrac{3}{4}(3x - 2) \lt \dfrac{1}{2}$
This is a case of "AND".
It is an inequality in "compact form".
We can solve this one in two ways:
Separately or
Together.
$
\boldsymbol{1st\:\: way:\:\: Separately} \\[3ex]
-\dfrac{1}{4} \lt \dfrac{3}{4}(3x - 2) \\[5ex]
\dfrac{3}{4}(3x - 2) \gt -\dfrac{1}{4} \\[5ex]
LCD = 4 \\[3ex]
Multiply\:\: both\:\: sides\:\: by\:\: 4 \\[3ex]
4 * \dfrac{3}{4}(3x - 2) \gt 4 * -\dfrac{1}{4} \\[5ex]
3(3x - 2) \gt -1(1) \\[3ex]
9x - 6 \gt -1 \\[3ex]
9x \gt -1 + 6 \\[3ex]
9x \gt 5 \\[3ex]
x \gt \dfrac{5}{9} \\[5ex]
\left(\dfrac{5}{9}, \infty\right) \\[5ex]
AND \\[3ex]
\dfrac{3}{4}(3x - 2) \lt \dfrac{1}{2} \\[5ex]
LCD = 4 \\[3ex]
Multiply\:\: both\:\: sides\:\: by\:\: 4 \\[3ex]
4 * \dfrac{3}{4}(3x - 2) \lt 4 * \dfrac{1}{2} \\[5ex]
3(3x - 2) \lt 2(1) \\[3ex]
9x - 6 \lt 2 \\[3ex]
9x \lt 2 + 6 \\[3ex]
9x \lt 8 \\[3ex]
x \lt \dfrac{8}{9} \\[5ex]
\left(-\infty, \dfrac{8}{9}\right) \\[5ex]
$
Because of the "AND", the solution is the intersection of the two solutions.
$
Set\:\:Notation:\:\: \left\{x | \dfrac{5}{9} \lt x \lt \dfrac{8}{9}\right\} \\[5ex]
Interval\:\:Notation:\:\: \left(\dfrac{5}{9}, \dfrac{8}{9}\right) \\[5ex]
\boldsymbol{2nd\:\: way:\:\: Together} \\[3ex]
-\dfrac{1}{4} \lt \dfrac{3}{4}(3x - 2) \lt \dfrac{1}{2} \\[5ex]
LCD = 4 \\[3ex]
Multiply\:\: each\:\: side\:\: by\:\: 4 \\[3ex]
4 * -\dfrac{1}{4} \lt 4 * \dfrac{3}{4}(3x - 2) \lt 4 * \dfrac{1}{2} \\[5ex]
-1 \lt 3(3x - 2) \lt 2(1) \\[3ex]
-1 \lt 9x - 6 \lt 2 \\[3ex]
Add\:\: 6\:\:to\:\:both\:\:sides \\[3ex]
-1 + 6 \lt 9x - 6 + 6 \lt 2 + 6 \\[3ex]
5 \lt 9x \lt 8 \\[3ex]
Divide\:\: each\:\: side\:\: by\:\: 9 \\[3ex]
\dfrac{5}{9} \lt \dfrac{9x}{9} \lt \dfrac{8}{9} \\[5ex]
\dfrac{5}{9} \lt x \lt \dfrac{8}{9} \\[5ex]
Set\:\:Notation:\:\: \left\{x | \dfrac{5}{9} \lt x \lt \dfrac{8}{9}\right\} \\[5ex]
Interval\:\:Notation:\:\: \left(\dfrac{5}{9}, \dfrac{8}{9}\right) \\[5ex]
$
To check the solution, we have to check it with only one number.
This is because of the "AND".
That number should satisfy both inequalities.
Check
$
\underline{1st\:\:Part} \\[3ex]
-\dfrac{1}{4} \lt \dfrac{3}{4}(3x - 2) \\[5ex]
Solution\:\: is\:\: \dfrac{5}{9} \lt x \lt \dfrac{8}{9} \\[5ex]
Let\:\: x = \dfrac{6}{9} \\[5ex]
\dfrac{3}{4}(3x - 2) \\[5ex]
= \dfrac{9x}{4} - \dfrac{3}{2} \\[5ex]
= \dfrac{9}{4} * \dfrac{6}{9} - \dfrac{3}{2} \\[5ex]
= \dfrac{6}{4} - \dfrac{3}{2} \\[5ex]
= \dfrac{3}{2} - \dfrac{3}{2} \\[5ex]
= 0 \\[3ex]
-\dfrac{1}{4} \lt 0
$
|
$
\underline{2nd\:\:Part} \\[3ex]
\dfrac{3}{4}(3x - 2) \lt \dfrac{1}{2} \\[5ex]
Solution\:\: is\:\: \dfrac{5}{9} \lt x \lt \dfrac{8}{9} \\[5ex]
Must\:\:use\:\: x = \dfrac{6}{9} \\[5ex]
\dfrac{3}{4}(3x - 2) \\[5ex]
= \dfrac{9}{4}x - \dfrac{3}{2} \\[5ex]
= \dfrac{9}{4} * \dfrac{6}{9} - \dfrac{3}{2} \\[5ex]
= \dfrac{6}{4} - \dfrac{3}{2} \\[5ex]
= \dfrac{3}{2} - \dfrac{3}{2} \\[5ex]
= 0 \\[3ex]
0 \lt \dfrac{1}{2}
$
|
$-\dfrac{1}{4} \lt 0 \lt \dfrac{1}{2}$ |