Solved Examples on the Theorems of Polynomials



Samuel Dominic Chukwuemeka (SamDom For Peace) For ACT Students
The ACT is a timed exam...60 questions for 60 minutes
This implies that you have to solve each question in one minute.
Some questions will typically take less than a minute a solve.
Some questions will typically take more than a minute to solve.
The goal is to maximize your time. You use the time saved on those questions you solved in less than a minute, to solve the questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for a wrong answer.

For SAT Students
Any question labeled SAT-C is a question that allows a calculator.
Any question labeled SAT-NC is a question that does not allow a calculator.

For JAMB Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.
Unless specified otherwise, any question labeled JAMB is a question from JAMB Physics

For WASSCE Students: Unless specified otherwise:
Any question labeled WASCCE is a question from WASCCE Physics
Any question labeled WASSCE-FM is a question from the WASSCE Further Mathematics/Elective Mathematics

For NSC Students
For the Questions:
Any space included in a number indicates a comma used to separate digits...separating multiples of three digits from behind.
Any comma included in a number indicates a decimal point.
For the Solutions:
Decimals are used appropriately rather than commas
Commas are used to separate digits appropriately.

Solve all questions.
Show all work.

For Questions (1.) through (10.):
Use your knowledge of Polynomial Theorems to:
(1.) Write the polynomial in factored form.
(2.) Determine the zeros.

Let:
Leading Coefficient = LC
Constant Term = CT
(1.) $f(x) = x^3 - x^2 - 37x - 35$


$ f(x) = x^3 - x^2 - 37x - 35 \\[3ex] Polynomial\;\;is\;\;in\;\;standard\;\;form \\[3ex] \underline{Rational\;\;Zero\;\;Theorem} \\[3ex] LC = 1 \\[3ex] Factors\;\;of\;\;LC = \pm 1 \\[3ex] CT = -35 \\[3ex] Factors\;\;of\;\;CT = \pm 1, \pm 5, \pm 7, \pm 35 \\[3ex] Possible\;\;Rational\;\;Zeros = \dfrac{Factors\;\;of\;\;CT}{Factors\;\;of\;\;LC} \\[5ex] = \dfrac{\pm 1}{\pm 1}, \dfrac{\pm 5}{\pm 1}, \dfrac{\pm 7}{\pm 1}, \dfrac{\pm 35}{\pm 1} \\[5ex] = \pm 1, \pm 5, \pm 7, \pm 35 \\[5ex] Try\;\;x = -1 \\[3ex] f(-1) = (-1)^3 - (-1)^2 - 37(-1) - 35 \\[3ex] f(-1) = -1 - 1 + 37 - 35 \\[3ex] f(-1) = 0 \\[3ex] x = -1 \;\;is\;\;a\;\;zero \\[3ex] x + 1 \;\;is\;\;a\;\;factor \\[3ex] \underline{Synthetic\;\;Division:\;\;By\;\;Addition} \\[3ex] \begin{array}{c|cccc} -1 & 1 & -1 & -37 & -35 \\ + & & -1 & 2 & 35 \\ \hline & 1 & -2 & -35 & 0 \\ \end{array} $
$ Quotient = x^2 - 2x - 35 \\[3ex] = (x + 5)(x - 7) \\[3ex] \implies \\[3ex] (a.)\;\;Factored\;\;Form\;\;of\;\;f(x) = (x + 1)(x + 5)(x - 7) \\[5ex] (b.)\;\; Zeros\;\;of\;\;f(x)\;\;are: \\[3ex] x = -1 \\[3ex] x = -5 \\[3ex] x = 7 $
(2.) $f(x) = 2x^3 - x^2 + 2x - 1$


$ f(x) = 2x^3 - x^2 + 2x - 1 \\[3ex] Polynomial\;\;is\;\;in\;\;standard\;\;form \\[3ex] \underline{Rational\;\;Zero\;\;Theorem} \\[3ex] LC = 2 \\[3ex] Factors\;\;of\;\;LC = \pm 1, \pm 2 \\[3ex] CT = -1 \\[3ex] Factors\;\;of\;\;CT = \pm 1 \\[3ex] Possible\;\;Rational\;\;Zeros = \dfrac{Factors\;\;of\;\;CT}{Factors\;\;of\;\;LC} \\[5ex] = \dfrac{\pm 1}{\pm 1}, \dfrac{\pm 1}{\pm 2} \\[5ex] = \pm 1, \dfrac{\pm 1}{\pm 2} \\[5ex] \underline{Descartes'\;\;Rule\;\;of\;\;Signs} \\[3ex] f(1) = 2(1)^3 - 1^2 + 2(1) - 1 \\[3ex] f(1) = 2(1) - 1 + 2 - 1 \\[3ex] f(1) = 2 \color{darkblue}{-} 1 \color{darkblue}{+} 2 \color{darkblue}{-} 1 \\[3ex] Variations\;\;in\;\;signs = 2\;\;or\;\;0 \\[5ex] f(-1) = 2(-1)^3 - (-1)^2 + 2(-1) - 1 \\[3ex] f(-1) = 2(-1) - 1 - 2 - 1 \\[3ex] f(-1) = -2 - 1 - 2 - 1 \\[3ex] Variations\;\;in\;\;signs = None \\[3ex] $ There is no negative real zero.
So, we shall not waste our time in that regard.

$ Try\;\;x = \dfrac{1}{2} \\[5ex] f\left(\dfrac{1}{2}\right) = 2\left(\dfrac{1}{2}\right)^3 - \left(\dfrac{1}{2}\right)^2 + 2\left(\dfrac{1}{2}\right) - 1 \\[5ex] f\left(\dfrac{1}{2}\right) = 2\left(\dfrac{1}{8}\right) - \dfrac{1}{4} + 1 - 1 \\[5ex] f\left(\dfrac{1}{2}\right) = \dfrac{1}{4} - \dfrac{1}{4} + 1 - 1 \\[5ex] f\left(\dfrac{1}{2}\right) = 0 \\[5ex] x = \dfrac{1}{2} \;\;is\;\;a\;\;zero \\[5ex] x - \dfrac{1}{2} \;\;is\;\;a\;\;factor \\[5ex] \underline{Synthetic\;\;Division:\;\;By\;\;Addition} \\[3ex] \begin{array}{c|cccc} \dfrac{1}{2} & 2 & -1 & 2 & -1 \\ + & & 1 & 0 & 1 \\ \hline & 2 & 0 & 2 & 0 \\ \end{array} $
$ Quotient = 2x^2 + 0x + 2 \\[3ex] = 2x^2 + 2 \\[3ex] = 2(x^2 + 1) \\[3ex] $ $x^2 + 1$ cannot be simplified further.

$ \implies \\[3ex] (a.)\;\;Factored\;\;Form\;\;of\;\;f(x) = 2\left(x - \dfrac{1}{2}\right)(x^2 + 1) \\[5ex] (b.)\;\; Zeros\;\;of\;\;f(x)\;\;are: \\[3ex] 1st:\;\;x = \dfrac{1}{2} \\[5ex] x^2 + 1 = 0 \\[3ex] x^2 = -1 \\[3ex] x = \pm \sqrt{-1} \\[3ex] x = \pm i \\[3ex] 2nd:\;\;x = i \\[3ex] 3rd:\;\;x = -i $
(3.)

(4.)

(5.)

(6.)

(7.)


(8.) Use the Descartes' Rule of Signs and your knowledge of Polynomial Function Theorems to complete the table below.
Write all possibilities.


(9.)

(10.)

(11.)

(12.) Use the Descartes' Rule of Signs and your knowledge of Polynomial Function Theorems to complete the table below.
Write all possibilities.

Possible Zeros of Polynomial Functions
Function Number of zeros Possible positive real zeros Possible negative real zeros Complex zeros
... ... ... ... ...


$ (a.)\;\; f(x) = 9x^7 + 2x^6 + x^4 + 4x + 3 \\[3ex] (b.)\;\; f(x) = -3x^3 - 7x^2 + x - 6 \\[3ex] (c.)\;\; f(x) = 5x^4 - 8x^2 - x + 7 \\[3ex] (d.)\;\; f(x) = -6x^7 + x^3 - x^2 + 3 \\[3ex] (e.)\;\; f(x) = -9x^4 + 6x^2 - 3 \\[3ex] $

Possible Zeros of Polynomial Functions
Function Number of zeros Possible positive real zeros Possible negative real zeros Complex zeros
$ (a.)\;\; f(x) = 9x^7 + 2x^6 + x^4 + 4x + 3 \\[3ex] \underline{Positive} \\[3ex] f(1) = 9 + 2 + 1 + 4 + 3 \\[3ex] Variation\;\;in\;\;signs = 0 \\[5ex] \underline{Negative} \\[3ex] f(-1) = 9(-1)^7 + 2(-1)^6 + (-1)^4 + 4(-1) + 3 \\[3ex] f(-1) = -9 + 2 + 1 - 4 + 3 \\[3ex] f(-1) = \color{darkblue}{-}9 \color{darkblue}{+} 2 \color{black}{+} 1 \color{black}{-} 4 \color{black}{+} 3 \\[3ex] Variation\;\;in\;\;signs = 3\;\;or\;\;1 $ 7 0
0
3
1
4
6
$ (b.)\;\; f(x) = -3x^3 - 7x^2 + x - 6 \\[3ex] \underline{Positive} \\[3ex] f(1) = -3 \color{darkblue}{-} 7 \color{darkblue}{+} 1 \color{darkblue}{-} 6 \\[3ex] Variation\;\;in\;\;signs = 2\;\;or\;\;0 \\[5ex] \underline{Negative} \\[3ex] f(-1) = -3(-1)^3 - 7(-1)^2 + (-1) - 6 \\[3ex] f(-1) = 3 - 7 - 1 - 6 \\[3ex] f(-1) = \color{darkblue}{+} 3 \color{darkblue}{-} 7 - 1 - 6 \\[3ex] Variation\;\;in\;\;signs = 1 $ 3 2
0
1
1
0
2
$ (c.)\;\; f(x) = 5x^4 - 8x^2 - x + 7 \\[3ex] \underline{Positive} \\[3ex] f(1) = 5 - 8 - 1 + 7 \\[3ex] f(1) = \color{darkblue}{+} 5 \color{darkblue}{-} 8 \color{black}{-} 1 \color{black}{+} 7 \\[3ex] Variation\;\;in\;\;signs = 2\;\;or\;\;0 \\[5ex] \underline{Negative} \\[3ex] f(-1) = 5(-1)^4 - 8(-1)^2 - (-1) + 7 \\[3ex] f(-1) = 5 - 8 + 1 + 7 \\[3ex] f(-1) = \color{darkblue}{+} 5 \color{darkblue}{-} 8 \color{darkblue}{+} 1 + 7 \\[3ex] Variation\;\;in\;\;signs = 2\;\;or\;\;0 $ 4 2
2
0
0
2
0
2
0
0
2
2
4
$ (d.)\;\; f(x) = -6x^7 + x^3 - x^2 + 3 \\[3ex] \underline{Positive} \\[3ex] f(1) = -6 + 1 - 1 + 3 \\[3ex] f(1) = \color{darkblue}{-} 6 \color{darkblue}{+} 1 \color{darkblue}{-} 1 \color{darkblue}{+} 3 \\[3ex] Variation\;\;in\;\;signs = 3\;\;or\;\;1 \\[5ex] \underline{Negative} \\[3ex] f(-1) = -6(-1)^7 + (-1)^3 - (-1)^2 + 3 \\[3ex] f(-1) = 6 - 1 - 1 + 3 \\[3ex] f(-1) = \color{darkblue}{+} 6 \color{darkblue}{-} 1 \color{black}{-} 1 \color{black}{+} 3 \\[3ex] Variation\;\;in\;\;signs = 2\;\;or\;\;0 $ 7 3
3
1
1
2
0
2
0
2
4
4
6
$ (e.)\;\; f(x) = -9x^4 + 6x^2 - 3 \\[3ex] \underline{Positive} \\[3ex] f(1) = -9 + 6 - 3 \\[3ex] f(1) = \color{darkblue}{-} 9 \color{darkblue}{+} 6 \color{darkblue}{-} 3 \\[3ex] Variation\;\;in\;\;signs = 2\;\;or\;\;0 \\[5ex] \underline{Negative} \\[3ex] f(-1) = -9(-1)^4 + 6(-1)^2 - 3 \\[3ex] f(-1) = -9 + 6 - 3 \\[3ex] f(-1) = \color{darkblue}{-} 9 \color{darkblue}{+} 6 \color{darkblue}{-} 3 \\[3ex] Variation\;\;in\;\;signs = 2\;\;or\;\;0 $ 4 2
2
0
0
2
0
2
0
0
2
2
4
(13.)

(14.)

(15.)

(16.)

(17.)

(18.)

(19.)

(20.)





Top




(21.)

(22.)

(23.)

(24.)

(25.)

(26.)

(27.)

(28.)

(29.)

(30.)